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A B S T R A C T

Human visual inspection skills remain superior for ensuring product quality and conformance to standards in the
manufacturing industry. However, at present these skills cannot be formally shared with other workers or used
to develop and implement new solutions or assistive technologies because they involve a high level of tacit
knowledge which only exists in skilled operators' internal cognitions. Industry needs reliable methods for the
capture and analysis of this tacit knowledge so that it can be shared and not lost but also so that it can be best
utilised in the transfer of manual work to automated systems and introduction of new technologies and pro-
cesses. This paper describes two UK manufacturing case studies that applied systematic task analysis methods to
capture and scrutinise the tacit knowledge and skills being applied in the visual inspection of aerospace com-
ponents. Results reveal that the method was effective in eliciting tacit knowledge, and showed that tacit skills are
particularly needed when visual inspection standards lack specification or the task requires greater subjective
interpretation. The implications of these findings for future research and for developments in the manufacturing
industry are discussed.

1. Introduction

Visual inspection (VI) is a traditional manual activity that involves
careful and critical assessment of an object with reference to a pre-
defined standard (Drury and Watson, 2002; Drury and Dempsey, 2012;
See, 2012). In manufacturing, VI is used to identify and diagnose de-
fects, which is essential for ensuring products meet satisfactory quality
standards (Garrett et al., 2001). Despite typical error rates of between
20% and 30% (Drury and Fox, 1975), human VI has remained essential
in manufacturing because the accuracy and efficiency of human visual
acuity has remained superior to the visual inspection capabilities of-
fered by available automated alternatives. Thus, although highly la-
bour-intensive, VI continues to be particularly important in safety cri-
tical and high value manufacturing (HVM) processes where the
consequences of missed defects are of a higher cost for both human and
commercial reasons, e.g. “injury, fatality, loss of expensive equipment,
scrapped items, rework, or failure to procure repeat business” (See et al.,
2017, p. 262). As visual inspection is highly skilled, best practice
knowledge and techniques are valuable, and as it is labour-intensive it
is a prime candidate for process improvement/automation to enhance
process efficiency in the future.

Visual inspection relies on ‘tacit knowledge’: an intrinsic under-
standing of how things work and are organised which enables humans

to intuitively produce strategies and solutions in new circumstances
(Reber, 1989). Whereas ‘explicit knowledge’ can easily be described,
aggregated, codified and catalogued in written instructions for formal
learning, tacit knowledge is less tangible. It is the personal and con-
textual awareness that we typically keep in our mind and its cognitive
processes that is difficult to capture, classify or communicate, and ty-
pically “can only be acquired through practical experience” (Lam, 2000).
Unlike explicit knowledge in training manuals and programmes, tacit
knowledge is typically learned by observation, imitation and practice
which is difficult to communicate (Smith, 2001). Therefore, tacit
knowledge refers to the informal ‘know-how’ about how to do things
that we all develop over time and experience, often unconsciously,
which is typically retained in our individual memories but not formally
recorded or shared.

In the context of manufacturing VI operations, there has been little
research to specifically explore the role of tacit knowledge. We know
that operators are typically provided with reference manuals and
standard operating instructions (SOIs) which set out explicit knowledge
about the task. However, it must be that operators build up their tacit
knowledge ‘know-how’ about how to accurately identify/classify pro-
duct defects through experience and repeated performance of VI tasks.
Consequently, a considerable degree of more detailed contextual in-
formation about how best to detect and diagnose product defects must
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exist in skilled operators' personal memory stores and cognitive pro-
cesses. Although it has been practical for this personal ‘know-how’ to
remain undocumented and simply be applied as needed by skilled op-
erators, there is a growing need for a formal method to capture and
understand tacit knowledge in manufacturing VI tasks in order to
transfer it to other human or automated processes. The following sec-
tions provide more detail to explain the three main reasons why tacit
knowledge should be captured within manufacturing.

Firstly, tacit knowledge capture is needed for transfer to other op-
erators. As it involves a far more comprehensive understanding of a
task's content and protocol than could be derived simply from ob-
servation or design methods, sharing tacit knowledge with new or
transitory members of the workforce is valuable. Without such an in-
depth understanding of the ‘know-how’ that experienced operators
employ to identify and diagnose defects, the formal training given to
new operators is obviously more limited. Capturing this knowledge is
going to be increasingly important as workforce mobility continues to
rise (Favell et al., 2007; Pitts and Recascino Wise, 2010). Organisations
will need to rely less on the well-established experience and skills of
long-term workforces and, instead, rely more on utilising the cap-
abilities of available less-experienced personnel. Thus, to effectively
transfer the task procedure in instruction and training programmes an
in-depth understanding of how the task is performed, in detailed steps,
is inevitably going to be of great benefit. Without in-depth tacit
knowledge the nuances of experienced ‘know-how’ will not be trans-
ferrable to transient and evolving workforces which is highly likely to
impact negatively on production performance and efficiency.

Secondly, the capture of tacit knowledge is also going to be im-
portant to inform the design of new and emerging technologies. Advances in
vision and sensing technologies are going to offer new opportunities for
the automation and digitisation of VI processes (Caggiano et al., 2015;
Huang and Pan, 2015; Borrmann et al., 2016). However, in order to be
effective these new systems will not be designed to merely replace
original human activity because a) that would not utilise the new po-
tential technological capabilities and b) it would not be possible to
match human performance for many task steps, particularly those re-
quiring flexibility and intelligence (Ding and Hon, 2013; de Winter and
Dodou, 2014). Therefore, the design of these new systems will not be
based on a simple transfer of the original human task protocol but on a
detailed analysis of it in which unnecessary or human-specific functions
can be identified and eliminated or redesigned. This will require an
accurate and thorough breakdown of the original manual work content
which, therefore, should include tacit knowledge. Whether entirely new
systems are being designed to replace human VI, or whether systems
are redesigned to augment/assist human operators in their manual VI
activities, a thorough understanding of the original human performance
and procedure will be needed to appropriately revise or reallocate
functions.

Thirdly, tacit knowledge applied in VI manufacturing tasks needs to
be captured to optimise the introduction and implementation of new systems
and processes. It has long been recognised that the success of new in-
dustrial systems and technology can be highly dependent on how well
their design and application has included consideration of human/so-
cial factors (Chung, 1996; Battini et al., 2011). Clearly then, a good
understanding of key human/social requirements and work activities is
needed at the design stage so that key factors which will enhance a new
system's introduction and operational effectiveness can be considered
and included (and so that factors which are likely to have negative
impacts on its success can be avoided). This means it is not only im-
portant that the manual work content of new systems is derived but that
the wider human/social impacts are accurately predicted. Thus, to
improve the likelihood of successful implementation of new systems,
particularly with greater levels of automation and workforce diversity,
there is a need for a reliable method to capture and analyse the tacit
knowledge underlying VI work so that key barriers and enabling factors
can be considered.

As the above examples illustrate, there is a need to capture tacit
knowledge to accommodate forthcoming industrial challenges such as
the evolving requirements of mobile workforces, advancing technology
design, and effective new system implementation. To meet these chal-
lenges a reliable method for capturing, understanding and sharing tacit
knowledge in manufacturing VI work is needed. This paper describes
two case studies that have been conducted to address this industrial
problem. First we present a selection of relevant background literature
on the topic of VI in manufacturing.

2. Background

2.1. The process of visual inspection

The manual process of VI involves five principal steps: Set up,
Present, Search, Decide and Respond (Drury and Watson, 2002; Drury
and Dempsey, 2012). Of these five steps, the ‘search’ and ‘decide’ ac-
tivities appear to have received the most interest in previous in-
vestigations, probably because they are most cognitively complex and
error-prone (Rao et al., 2006; Drury and Dempsey, 2012; See et al.,
2017). The ‘search’ step of VI has been found particularly time-con-
suming and prone to error, particularly in relation to omissions where a
defect is missed rather than ‘commissive errors’ or false alarms (See,
2012). VI searching tends to not only involve visual skills but also the
scrutiny of other sensory cues, such as touch and sound for tactile and
auditory feedback (Garrett et al., 2001). In manufacturing VI tasks,
operators are often provided with additional equipment to assist their
‘search’ accuracy, such as additional lighting and magnifying devices
(Charles et al., 2015).

Although ‘search’ and ‘decide’ activities are totally independent
processes (Spitz and Drury, 1978), if a search has led to identification of
an anomaly or imperfection the inspector will then proceed to the
‘decide’ step to determine its type/class and the subsequent action that
needs to be taken. In manufacturing VI tasks, the ‘decide’ step will re-
quire examining the object with reference to pre-defined standard cri-
teria which is typically provided in reference manuals in written and
graphical form. In addition, measurement equipment may be provided
for the operator to more accurately classify the defect and its severity,
and determine the action that needs to be taken. However, despite
human sensory capabilities skill and the provision of equipment aids,
there are still a number of factors which may impair VI.

2.2. Factors that affect visual inspection

A great deal of literature from research studies has examined VI in
manufacturing contexts, and more recently in relation to the develop-
ment of new automated inspection systems (e.g. Golnabi and Asadpour,
2007; Lin, 2007; Lyu and Chen, 2009; Kumar and Kannan, 2010; Sun
et al., 2010; Mar et al., 2011; Ravikumar et al., 2011; Sun et al., 2012;
Huang and Pan, 2015; Mumtaz et al., 2012; Caggiano et al., 2015).
There appears to have been little or no dedicated exploration of tacit
knowledge in these various studies. However, in a wide review of the
visual inspection research literature, See (2012) compiled a table listing
the wide range of factors have been identified as influential to VI per-
formance across different types of production (Table 1).

These task, individual, environmental, organisational, and social
factors will undoubtedly be relevant in varying degrees across specific
manufacturing environments and VI processes. The enormous number
of potential features that these factors comprise is too large for review
here, and many are not directly relevant to tacit knowledge. However,
some factors are especially and directly relevant to the development
and application of tacit knowledge in manufacturing VI tasks and these
will be discussed: Task – complexity, standards and pacing; Individual –
scanning strategy; Organisational – training.
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2.2.1. Task factors
As shown in Table 1, task-related factors are determined by the

features of the particular object that is being inspected and its defects.
There is an obvious relationship between the complexity of an object's
visible features and the complexity of the task of inspecting it. Task
complexity is a highly important factor across different conditions and
environments, and is a function of these features. Complexity is defined
by the physical nature of the object being inspected (e.g. size, shape,
surface texture, condition) as well as the defects that are present or
potentially present on the object (e.g. number of defects, number of
different defect categories) and their distribution (Gallwey and Drury,
1986; Rao et al., 2006).

Greater intricacy of an object's features has been found to negatively
affect VI (Harris, 1969), and the condition of the object's surface can
mask defects and complicate visibility, not only if unclean but if uneven
or textured (Drury and Clement, 1978). The number and variability of
defects on an object also affect VI task complexity and performance. For
example, a higher number of defects has been found to increase levels
of cognitive demand (Wickens and Carswell, 2012). Laboratory studies
have also found that as the number of fault types under scrutiny in-
creases the degree of fault detection decreases, and that inspection for
multiple faults is found more difficult than inspecting for single faults
especially if they appear physically similar (Gallwey and Drury, 1986;
Rao et al., 2006). These impacts on task demand and complexity are
important given that visual inspectors often need to look for several
types of defects, of varying size and shape, at the same time as part of
their work. As it is not possible to eliminate these factors it is likely that
inspectors, over time, develop ways to compensate for component and
defect intricacy. No details about how inspectors may do this were
found within the literature, however it is likely that people develop
compensatory techniques or ‘scanning strategies’ in order to execute
their tasks successfully – and this becomes tacit knowledge over time as
inspectors put them into practice in their day to day work.

Inspection standards are another factor common to VI across con-
ditions. Well written standards can reduce cognitive demand and the
need to rely on subjective judgements, particularly when they include
visual aids (pictures or photographs), and/or computer based prompts
(Drury and Watson, 2002). However, the provision of written/graphical
information can also contribute to task complexity (Gallwey and Drury,
1986) and, unsurprisingly, their complexity has an impact on both
‘search’ and ‘decide’ performance (Rao et al., 2006). Most inspection
standards and defect classification systems are based on several factors
such as defect type, defect location, and defect size but those that are
poorly written and ambiguous incur greater cognitive strain for jud-
gement and decision making (Gramopadhye et al., 1997; Rao et al.,
2006). If inspection standards do not clearly distinguish different defect
characteristics and types this leads to increased task complexity, fatigue
and workload, along with lower accuracy of defect identification
(Wickens and Carswell, 2012).

Unclear definitions and instructions for VI also tend to encourage
inspectors to develop their own subjective assessment criteria, which is

not only at risk of being incorrect but can also drift over time and lead
to greater inconsistency in performance (Juran and Gryna, 1988). De-
cisions based on subjective perception and previous experience of de-
fects have been found to have lower reliability (Garrett et al., 2001;
Laofor and Peansupap, 2012) which may be due to increased demands
on the memory in a process that is already reliant on an extensive use of
short and long term memory (Gallwey, 1998). However, it must also be
considered that these personal methods and criteria could be equally
efficient and correct, given that people remain superior to any auto-
mation for performing VI and decision-making activities (Thapa et al.,
1996), adapting to unforeseen events (Drury and Watson, 2002), and
utilising highly responsive tactile senses (Garrett et al., 2001; Heidl
et al., 2013). The development of these abilities and knowledge of both
the part and defects over time is the formation of tacit knowledge. As
mentioned above, the problem that the development of tacit knowledge
poses is that if this knowledge and understanding is not passed on to
other inspectors, or captured and recorded, it may be lost. Additionally,
if captured, this information could be used to inform the design of new
and emerging technologies which would aid inspectors in their in-
spection process.

The time and pace of VI tasks is another factor relevant to all VI
tasks. The time allowed for VI tasks has a significant impact on per-
formance (Garrett et al., 2001) and this corresponds with the negative
impact of work pace on industrial task performance in general (e.g.
Dudley, 1961; Lin et al., 2001). However, no evidence was found in the
literature regarding the potential for tacit knowledge and experience to
counterbalance the negative effects of limited time and task pace.

2.2.2. Individual factors
Almost all of the range of potential individual factors listed in

Table 1 are defined by people's specific characteristics and experiences
and, therefore, are context-specific. However, ‘scanning strategies’ that
people use in VI tasks are most relevant to the role of tacit knowledge in
manufacturing across individuals. Courtney and Guan (1998) found
that VI search strategies vary greatly across individuals and tasks,
manifest in whether the search is random, systematic, or random with
some controlled overlap (where the inspector avoids scanning already
searched areas, but may overlap due to memory loss). Random searches
that lack pattern have been found to not only take longer than a more
systematic search but also be more vulnerable to defects being missed
by the inspector (Gramopadhye et al., 1997; Tetteh and Jiang, 2006).
Systematic searching, on the other hand, has been found to result in
better performance as measured by a significantly greater detection of
defects, a quicker search (Gramopadhye et al., 1997; Clemons, 2013),
and increased perceptual sensitivity for defects (Watts, 2011).

Although Drury and Watson (2002) state that individuals naturally
tend to follow an unstructured pattern when searching an object, Drury
and Chi (1995) laboratory experiment findings indicated that the de-
sign of an object (in their example a circuit board) may encourage and
assist participants to adopt a systematic VI approach. If the inspection
task/object does not characteristically lend itself to a systematic

Table 1
Identified factors that impact on visual inspection performance (from See, 2012).

Task Individual Environmental Organisational Social

Defect Rate Gender Lighting Management Support Pressure
Defect Type Age Noise Training Consultation
Defect Salience Visual Acuity Temperature Retraining Isolation
Defect Location Intelligence Shift Duration Instructions Communications
Complexity Aptitude Time of Day Feedforward information
Standards Personality Vigilance Feedback
Pacing Time in Job Workplace Design Incentives
Multiple Inspections Experience Job Rotation
Overlays Visual Lobe
Automation Scanning Strategy

Biases
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approach then it is possible for the inspector to use cognitive feedback
to apply a systematic search, by applying information about scan path
and coverage that they may have acquired in training (Gramopadhye
et al., 1997) or through experience in normal working practices. Clearly
then, search or scanning strategies are a significant part of VI tacit
knowledge development and are likely to be particularly efficient and
accurate if developed directly from on the job experience of overcoming
task factors that present difficulties mentioned in Section 2.2.1. In order
to ensure this valuable knowledge can be shared amongst manu-
facturing work inspectors and used for successful process/automation
design there is a need to codify the current visual inspection techniques
that inspectors employ.

2.2.3. Organisational factors
In the list of organisational factors that are presented in Table 1,

training is directly relevant to the development of tacit knowledge in
manufacturing VI tasks. Operators in manufacturing environments in-
variably receive some form of training which will consist of aggregated
and codified explicit knowledge but, as described in the introduction to
this paper, tacit knowledge will be developed over time via more in-
formal practical experience. Unsurprisingly, training (including re-
training) can significantly improve inspection performance (Drury and
Watson, 2002) and a consistent training programme can enhance the
speed, accuracy, and performance of visual inspectors including those
new to the role (Gramopadhye et al., 1997). Experimental research
evidence also suggests that training which requires an active response
may be more effective than a passive programme (Czaja and Drury,
1981) and in one industrial case study a significant drop in error rates,
scrap, and rework was recorded after a modular active response
training programme was introduced (Kleiner and Drury, 1993). How-
ever, whilst it is clear that well-designed training may optimise VI
performance there does not appear to have been any exploration to
determine the potential enhancement that might be made if tacit
knowledge of experienced workers could be captured and disseminated
in formal training.

2.3. Tacit knowledge

As described, tacit knowledge is the ‘know-how’ about an object or
subject that people develop through personal experience and not formal
training, but rarely articulate because it exists in memory and cognitive
processes and “often resembles intuition” (Smith, 2001, p.314).

In the workplace, the intangibility of tacit knowledge and the dif-
ficulty of converting it into explicit knowledge means organisations
may lose critical information and best practice when skilled employees
leave (Smith, 2001). It would, therefore, be advantageous to system-
atically capture and analyse experienced workers' tacit knowledge, so
that it could be routinely disseminated via work standards and formal
training. In the context of manufacturing VI work, capturing tacit
knowledge would be particularly desirable to address the contemporary
industrial challenges set out in the introduction to this paper, so that
more effective methods of defect identification and classification pro-
tocols may be transferred to other personnel and to the design of new
systems and implementation strategies.

Attempts have been made to develop effective methods for the
capture and analysis of tacit knowledge and skill. For example, Phipps
et al. (2011) applied the skill, rule and knowledge (SRK) framework
developed by Rasmussen (1983, 1986) to traditional hierarchical task
analysis (Kirwan and Ainsworth, 1992) in order to identify tacit cog-
nitive task elements. Everitt et al. (2015) also applied this method to
capture and classify the knowledge and skills applied in complex
manufacturing task performance for the purposes of automation design.
In both of these examples the SRK framework is used for decomposition
of the task so that every individual step of activity in human task per-
formance can be classified according to one or more of three knowledge
levels which progressively require more cognitive effort:

Skill: behaviour involves an immediate recognition of a situation,
followed by a pre-programmed physical response (Embrey, 2005).
Performance is smooth and automatic, requiring little attention because
the required actions are understood in advance (Rasmussen, 1983,
1986).

Rule: behaviour is guided by more conscious control in the form of
stored rules derived first hand from prior experiences or conscious
problem solving (Rasmussen, 1983, 1986). The individual is aware that
there may be alternative courses of action, and that a choice may need
to be made between them (Elliott, 2005).

Knowledge: behaviour corresponds to a predominantly cognitive
stage of a task, often in unexpected situations, which requires a higher
degree of conscious control than for rule or skills based behaviours, and
analysis based on an understanding of explicit goals.

The SRK framework enables systematic analysis of task performance
and, as shown by the definitions above, it specifically allows inter-
pretation of the degree to which components of a task involve cognitive
effort via automatic or conscious activities. Additionally its presenta-
tion of skill, rule, and knowledge as types of performance, rather than
linear progressions of skill acquisition as seen with ‘Phases of skill ac-
quisition’ (Fitts, 1964) or the ‘Acquisition of cognitive skills’ (Anderson,
1982) models, enables classification of task steps within a process. Al-
lowing the identification and deeper investigation of specific aspects of
a task that are more prone to the development of skill and therefore
tacit knowledge. Consequently, the SRK framework appears to be an
ideal framework to apply in the capture of tacit knowledge, as a result
this study will follow the previous work by Phipps et al. (2011) for task
decomposition.

Having outlined the importance of capturing tacit knowledge in VI
task performance, this paper now describes the method used in two case
studies that explored tacit knowledge using the SRK framework.
Specifically, this research set out to determine whether application of
the SRK framework to traditional hierarchical task analysis would be an
effective means of eliciting tacit knowledge used in visual inspection.

3. Method

Two UK manufacturing facilities were nominated for the two field
studies by the high-value aerospace manufacturing company who
sponsored this work because they both comprised VI workforce units
that were critical to production. One facility (Area A) was responsible
for new component production, so VI is conducted there to check for
any flaws that may have occurred during the production process and to
ensure production quality. The other facility (Area B) houses in-service
product maintenance activities where in-use components are returned
and disassembled for VI to be conducted to check for any degradation
or damage, so the part can be either repaired or replaced. By in-
vestigating tacit knowledge in visual inspection used in these two dif-
ferent facilities it was possible to identify commonalities and differ-
ences in the development of tacit knowledge.

3.1. Participants

Area A: Twelve participants were interviewed across two shifts (six
participants in each shift), ten of which were female and two were
male. Data were collected over 7 h each day, with 3½ hours spent with
each shift. One inspector interviewed was a trainee, another was a
newly qualified inspector, and the rest had at least one year of ex-
perience.

Area B: Nine participants were interviewed across two shifts, all
were male and all had at least a year of experience. Data were collected
over 7 h each day, with 3½ hours spent with each shift.

The age of participants interviewed was not collected in this study,
due to known sensitivities within this organisation. However, each in-
spector's years of experience in the job role were collected as this is
relevant to the development of tacit knowledge. All available inspectors
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at the time of the study took part.

3.2. Research ethics

The research was approved by the Cranfield University Research
Ethics Committee, and performed in accordance with the Cranfield
Research Integrity Policy and the British Psychological Society (2014).

Inspectors were notified in advance by the organisation's manage-
ment. Researchers then gave a formal briefing to each participant in the
study to provide information about the nature of the study and its re-
quirements, and data processing protocols, before participants' in-
formed consent was obtained.

3.3. Procedure

Prior to formal data collection the researchers were given tours of
both areas. This provided the researchers with a basic understanding of
the manufacturing and VI processes to inform questioning during data
collection. Data were collected during twelve days of site visits: four
days spent in Area A comprising of two sessions of two days each, and
eight days in Area B comprising of one two-day, and two three-day
visits, ensuring sufficient coverage of the different shifts.

In this study an ethnographic approach was adopted, with data
collected through observations and unstructured interviews. No formal
interview schedule was developed prior to data collection. The inter-
viewers asked the inspectors to talk through their inspection tasks as
they performed them to demonstrate their VI procedures and explored
additional questions as they emerged. During the first session in both
areas, the inspectors explained and demonstrated their VI tasks and
processes, responded to unstructured questioning, and provided back-
ground information on the content of the Standard Operating
Instructions (SOIs) and reference manuals. Between the data collection
sessions, field notes were reviewed by the researchers, individually and
together, to stimulate questions for subsequent data collection events,
to optimise available time during data collection, and to refine the se-
lection of the analysis categories. The review between operators en-
sured consistency between the interviewers and the questions they
asked. Observation and interview sessions were run until data collec-
tion redundancy was reached. Task documentation including SOIs and
manuals were additionally reviewed after data collection to identify
where tacit knowledge may have developed to compensate for limita-
tions in the documentation.

The VI tasks being examined in each case study involved teams of
inspectors working on the identification, classification, and ‘sentencing’
(determining the remedial action needed) of defects in aerospace
components. When examining these components the inspectors search
for obvious defects and known problem areas that may lead to the
object being scrapped, such as large structural defects. A more in-depth
visual search then follows with any defects identified and marked up.
Some inspectors would ‘sentence’ defects to determine what remedial
action was needed immediately after detection, whereas others would

conduct their sentencing evaluation at the end of the search process.
This variation would depend on how the inspectors had been trained
and the particular facility in which they were working. For example,
due to the smaller size of the components inspected in Area A the
sentencing procedure was more likely to be completed at the end of the
inspection process whereas within Area B there were instances of sen-
tencing being conducted as defects were identified due to the much
larger size of the components. Sentencing decisions were made with
reference to formal inspection standards which are provided to in-
spectors to classify types of defects and features, such as acceptable or
unacceptable size and/or shape, and often include images or diagrams.
Three sentencing outcomes were used within both facilities: acceptable,
rework, and scrap. If an object was sentenced as a rework it would be
inspected again when it was returned to ensure the defect had been
removed and that the component was still acceptable with regards to its
overall shape.

The final visits in each area were used to validate the data that had
been gathered, and for this inspectors reviewed the analysis output that
had been developed by the researchers following data collection. This
process enabled inspectors to substantiate whether the data had been
correctly recorded or point out any errors or omissions that needed
amendment, thereby enabling the researchers to be confident that the
data analysis had produced an accurate representation of the VI pro-
cesses.

3.4. Analysis

The data from the interviews and observations were analysed using
Hierarchical Task Analysis (HTA), and Task Decomposition (TD) to
distinguish between procedural and tacit knowledge and to identify
skill, rule, or knowledge based performance. It is not possible to include
whole examples of either the HTA or the TD in this paper due to their
size and the commercial sensitivity of the data included in them.
However, a sanitised section of the TD from each area can be found
under the Task Decomposition subheading (Tables 2 and 3). These
techniques are also now described.

Table 2
Area A task decomposition subsections (limited to two tasks).

HTA Goals, Sub-goals, and Operations HTA Task Component Performance Level

0 Identify and classify defects on components.
5.2 Inspect each component individually Skill Rule
5.2.1 Move component so that all surfaces are inspected under different angles of light Skill
5.2.2 Check each surface in order Rule
5.3 Mark any defects Rule
6 Assess defects
6.1 Assess each defect in accordance with relevant documentation
6.1.1 Determine whether the defect will be machined off the finished component Skill Rule
6.1.2 Determine the type of defect Skill Rule
6.1.3 Determine acceptability of defect Skill Rule

Table 3
Area B task decomposition subsections (limited to two tasks).

HTA Goals, Sub-
goals, and
Operations

HTA Task Component Performance Level

0 Inspect and sentence components
7.3 Inspect to the level dictated by

documentation
Rule Skill

7.4 Write down a list of the defects
found noting where they are

Rule

7.4.1 Match the defect on the component
to the defects outlined in the manual

Rule Skill

7.4.2 Sentence these defects based on the
sentencing criteria within the
documentation

Knowledge Skill
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3.4.1. Hierarchical task analysis
In this study the HTA method was used for VI task analysis because

it enables the logical deconstruction of tasks into physical and cognitive
components (Kirwan and Ainsworth, 1992) following a systematic
procedure. The technique is used to break a task down according to its
series of goals and sub-goals. In this study this method was used for VI
task analysis as follows:

• Task: Visual Inspection.

• Overall goal: To identify and sentence defects on individual parts.

• Sub-goals: The goal was broken down into further sub-goals, which
collectively form the task components that need to be performed in
order to achieve the overall goal.

• Operations: The sub-goals were broken down into a hierarchy of
operations in turn to identify the actions which need to be per-
formed to achieve the overall goal. The nesting of operations is used
as a method to group operations together that are part of the same
task, they help to categorise parts of the task, therefore they are not
perceived as fractions or parts of a higher operation, but operations
in their own right that are required in order to successfully complete
a task.

To keep track of the hierarchical levels a rational numbering system
was used with the overall goal numbered 0, sub-goals numbered 1- n,
and operations then numbered using their sub-goals to list their order of
occurrence, and then their own number which depends on their order
in the sequence (e.g. 1.1–1.3.1). The data collection for the HTA con-
tinued until operations had been re-described by the operator(s) to the
level of description where the steps of a task were completely clear and
understood by the researchers; so that an operator could carry out the
task and meet the goal, in accordance with Piso (1981) methodology. In
order to provide a better representation of the cognitive task compo-
nents, TD was then used to extend the HTA.

3.4.2. Task decomposition
Task decomposition was then applied to the HTA. This technique is

a structured expansion of the HTA into a series of more detailed
statements identifying specific aspects of the task. The series of detailed
statements are grouped under subheadings designed to decompose the
task elements. To select the TD categories, reference was made to the
categories suggested by Kirwan and Ainsworth (1992). Additionally,
key factors and issues that had been identified in the literature on VI
and the nature of human skill was considered. The selection of cate-
gories (and HTA) was refined as observations and data collection

progressed. The TD categories and corresponding descriptions are as
follows:

• Purpose: The reason for a particular operation. This category was
included to improve the readability and comprehension of the HTA
and decomposition.

• Cues: The cues and feedback that the inspectors use to identify and
sentence defects. How does the inspector attend and respond to
these cues (whether consciously or unconsciously) during the task?

• Decision: The decisions made by the inspector. Given a particular
cue, or pattern of cues, what decisions does the operator make in
order to perform the task successfully?

• Performance level: The category of operator performance according
to the SRK framework (Rasmussen, 1983). Through identification of
task components, does performance require a level of conscious
control that signifies rule or knowledge-based behaviour (explicit or
declarative knowledge) or is it implicit and skill based (tacit
knowledge)?

• Likely errors and error correction: The types of error and remedial
actions that inspectors make. What are the likely errors that could
be made by the inspectors and how are these corrected?

• Critical values: The values that may potentially provide a basis for
rule-based performance. Are there any particular critical values re-
lating to the inspection and diagnosis of an object/component which
may influence performance or errors?

• Variations between individuals and protocols: The differences be-
tween task procedures used by inspectors and deviations from
formal standards. How do inspectors' VI strategies and performance
vary and how different are they from the recommended procedures
in SOIs?

These categories enabled a systematic analysis of each task step,
thereby providing an in-depth summary that included skill, rule or
knowledge categorisation. Tables 2 and 3 show a sanitised section of
the TD for Area A and B. Each instance of skill, rule, and knowledge
could then be tallied, divided by the total number of performance levels
(41 for Area A, and 89 for Area B) and multiplied by 100 to identify the
percentage of each type of categorisation and the breakdown by VI step,
which will now be reflected in the results section.

4. Results

Figs. 1 and 2 show the presence of skilled performance and, there-
fore, tacit knowledge within visual inspection. This provides evidence

Fig. 1. Area A skill rule knowledge breakdown by VI steps (%).
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of the effectiveness of HTA and TD in identifying tacit knowledge.
Within both Figures the SRK breakdown is presented for each of the VI
processes outlined in the functional model (Drury and Dempsey, 2012;
Rao et al., 2006). This enables the identification of tacit knowledge
within the specific VI task's processes: ‘set up’, ‘search’, ‘decide’ and
‘respond’ processes. The ‘present’ step of the model was not included as
this was not identified as part of the inspection process used by in-
spectors in either of the Areas.

4.1. Area A

Fig. 1 presents the overall breakdown of skill, rule, and knowledge
used by inspectors throughout the VI process completed in Area A.
Overall, 85% of tasks were identified as using procedural knowledge
(knowledge and rule), with 15% of tasks using tacit knowledge (skill).
The higher percentage of procedural knowledge is unsurprising because
the SRK framework is applied to observable behaviour and participant's
verbal reports of their activities, and procedural knowledge is easier to
verbalise than tacit knowledge. Out of the four steps of VI, tacit
knowledge was identified in only the ‘search’ and ‘decide’ steps of vi-
sual inspection. Within the ‘search’ step 30% of the task used skill based
behaviours, 50% rule, and 20% used knowledge. Knowledge based
behaviour was not observed in any other VI steps within Area A, this
suggests that there is a part of the ‘search’ task that requires a high
degree of conscious control and analysis. Within the ‘decide’ steps less
tacit knowledge was used compared to procedural knowledge, with a
difference of 25%. The ‘respond’ step for Area A shows 100% use of rule
based information, indicating that the way the inspectors respond once
they have identified and sentenced a defect is highly procedural. The
‘set up’ process is additionally highly procedural with 100% rule based
behaviour observed.

4.2. Area B

Within Area B the proportion of rule based tasks was 80% and 18%
were skill based (Fig. 2). Fig. 2 shows that skill based behaviour, in-
dicating the use of tacit knowledge, was required in three out of the
four VI steps, and within ‘set up’ and ‘decide’ the amount of rule based
behaviour was greater than tacit knowledge. However, the ‘search’ step
analysis showed a 50% split between tacit and procedural knowledge.
The significant implication of this finding is that if the tacit knowledge
were to be lost the detail of half of the steps completed by inspectors
during the ‘search’ phase of inspection would be lost with them. It is

likely that the consequence of this would be a dramatic decrease in the
effectiveness of defect identification.

To summarise, tacit knowledge was found in the VI conducted in
both facilities. Within Area A tacit knowledge was identified during the
‘search’ and ‘decide’ steps; and in the ‘set-up’, ‘search’, and ‘decide’
steps of VI for Area B. Illustrating that the occurrence of tacit knowl-
edge in VI can vary from one facility to another even when part of the
same organisation, and that tacit knowledge requires capture from all
aspects of a company, not just a single facility.

5. Discussion

This paper describes two case studies that were conducted to ad-
dress the industrial need for a method of tacit knowledge capture and
analysis. Application of the combined HTA and TD techniques were
successful in identifying the occurrence of tacit knowledge in manu-
facturing VI tasks being performed in operational UK facilities. The
method showed the incidence of tacit knowledge in four of the five
steps outlined in the functional model of VI (Drury and Dempsey, 2012;
Rao et al., 2006) and that tacit knowledge is used widely in VI tasks.
Moreover, results provide an insight into the important role of tacit
knowledge and skill in mitigating factors that have been associated with
VI performance impairments.

In both Areas inspectors were found to follow a systematic search
pattern similar to that described by Gramopadhye et al. (1997) which
begins in the same location and follows the same path for each com-
ponent. However, instead of using a prescribed pattern of inspection
derived from formal training and instructions, the inspectors demon-
strated that they had adopted patterns and strategies based on knowl-
edge gained from their experience in normal working practices. In these
developed methods, critical and known problem zones were inspected
first which included areas that previously presented defects that were
sentenced as scrap. In this way the inspectors' independent search
strategies enhance inspection efficiency as they enable more immediate
identification of scrappable defects before the entire component is
subjected to a full and time-consuming inspection. However, these
known problem areas did not appear to be recorded or formally pre-
sented to inspectors in the organisation's work standards which means
this information would have to be stored in inspectors' memories and
tacit knowledge. As mentioned in the literature, retaining this knowl-
edge and applying it to the visual inspection process is likely to lead to
increased task complexity for operators particularly when this process
is still being applied as knowledge or rule based performances

Fig. 2. Area B skill rule knowledge breakdown by VI steps (%).
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(Gramopadhye et al., 1997). Indeed, it was observed that after known
areas had been inspected both Area A and B inspectors followed a
systematic inspection process which would reduce workload and ensure
all steps are completed. This example shows that if this sort of in-
formation can be captured and provided in formal training it may re-
duce operators' cognitive load for this part of the inspection process.

In Area A the study showed that operators apply tacit knowledge
and skills to adapt methods to combat task complexity caused by sur-
face texture, as exposed by Drury and Clement (1978) research, by
adjusting components and moving them under light sources to increase
visibility of defects. Task complexity is also likely to be heightened in
Area A due to an extensive defect list which would be expected to
contribute to increased cognitive demand (Wickens and Carswell,
2012) and, therefore, to missed defects (Gallwey and Drury, 1986; Rao
et al., 2006; Drury and Dempsey, 2012). Additionally, some pictures
and descriptions in the inspection standards were found unclear and, in
some cases, did not clearly distinguish between defect types which
would compound task complexity and cognitive demand. However, the
study found that this complexity may be counterbalanced by a colla-
borative and mentoring environment in Area A, as experienced in-
spectors were found to share their knowledge with less experienced
inspectors. It is highly likely that this collaborative approach will re-
duce cognitive demand, improve standardisation, and help prevent the
development of inaccurate subjective methods. It supports the way tacit
knowledge is passed on within organisations (Smith, 2001) and con-
stitutes one of See's ‘social factors as shown in Table 1, demonstrating
that even factors that do not appear to be directly related to tacit
knowledge may contribute to its development and sharing amongst
personnel, and may reduce the loss of unrecorded experiential knowl-
edge.

As the components being inspected in Area B are in-service com-
ponents they arrive dirty and, therefore, defects may be masked.
However, here tacit knowledge was also found being applied to combat
task complexity as the hand cleaning task prior to full inspection is used
to complete a preliminary top-level inspection which pairs tactile and
visual feedback to identify potential problem areas. This is highly likely
to reduce the additional cognitive load caused by visual impairment
from the dirt on the components’ surface.

These results show that, over time, personnel observed in both case
studies have developed solutions to limitations and challenges in their
VI tasks which have developed into a range of tacit knowledge and
skills. The elicitation and identification of tacit knowledge in these case
studies verifies the findings from Phipps et al. (2011) and Everitt et al.
(2015), and provides further evidence supporting the effectiveness of
the task decomposition technique using Rasmussen (1983, 1986) fra-
mework. This method could therefore be used more widely within or-
ganisations to identify where task protocols and reference documenta-
tion can be improved. In particular, it demonstrates that it is possible to
capture and codify tacit knowledge that has been built up from ex-
perience so that more detailed skills can be taught through formal
learning as part of explicit knowledge. In future research it would be
advantageous to explore more, or all, of the factors in See's compilation
(Table 1) and to identify relationships between tacit knowledge/skills
development and the performance of VI tasks, particularly with respect
to the mitigation of performance constraints and complexities. For ex-
ample, a limitation of this study is that age and experience levels of the
participant sample were not considered relevant and age was not re-
corded, but future investigations could include analysis of these and
other individual level factors in a wider sample to ascertain the impact
of workforce characteristics. This sort of information could inform
methods of induction and training but also the potential moderating or
mediating effects of developmental factors such as experience and
training programmes. Additionally, research exploring training and
learning could be used to identify how and whether behaviours tran-
sition from knowledge through rule to skill, and whether there are types
of activities more prone to transition than others, which would also be

highly useful for the development of induction and recurrent training
schemes.

The studies demonstrated the effectiveness of building analysis from
qualitative ethnographic methods which provides rich and detailed
subjective insight. However, this is a long and laborious research pro-
cess which would not be efficient for industrial application. Thus, it
would be advantageous if future work was undertaken to develop more
objective practical methods for measuring tacit knowledge which could
be used to complement and enhance subjective qualitative data.

For the manufacturing industry, the benefits of capturing the valu-
able tacit knowledge that currently only exists inside inspectors' cog-
nitive processes is immense. This work has focused on investigations of
visual inspection but the principles of tacit knowledge and skills capture
are relevant to any tasks which involve a considerable degree of cog-
nitive reasoning and experiential ‘know-how’. To date, the highly de-
veloped skills of experienced operators are considered ‘craft’ based and
intangible abilities but this work demonstrates the feasibility of ap-
plying a systematic method to reach hidden expertise. Application of
this type of method could be critical to the development of effective
future manufacturing system processes by enabling organisations to
address the challenges of changing populations and technologies, and
to allocate human skills appropriately.
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